If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2-14y+3=0
a = 15; b = -14; c = +3;
Δ = b2-4ac
Δ = -142-4·15·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4}{2*15}=\frac{10}{30} =1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4}{2*15}=\frac{18}{30} =3/5 $
| x+2=-2x-7 | | 2=7/y+3-3/y-5 | | 3y^2-y+6=0 | | 2(48+-1y)+2y=96 | | 5y+6=7-3y | | (2x-1)3=x/5 | | {x+6+42}+-8=2X | | 3p÷4=-5 | | 6=-2x+3- | | 3x^2/3+1=13 | | 1-2x=6x+9 | | 9x-14=5x+4 | | 35=4(3^x) | | x^2+9x=3x+7 | | 6x-4-(x+3)=8 | | 2x-4(x-3)=1 | | M^3+m^2+4m+4=0 | | -4=3x-11/5 | | 9x+33-45+15x=15-3x | | A-1/2=2a-3/4 | | (x+3)^2/3+15=27 | | m/10=4/12 | | k−2=5 | | 81=8j-9+j | | 7x+2=7(3)+2 | | -28=8n-12-4n+8 | | y=10-(2) | | X4+-7x+-12=0 | | y=10-(0) | | 4x^2-5x-39=0 | | 3/4x+2=1/2x-6 | | -40=3x–19 |